Important progress has been made in the research and engineering of single-crystal high-nickel ternary cathode materials for lithium-ion batteries. Lithium nickel cobalt manganate (NMC) and lithium nickel cobalt aluminate (NCA) ternary cathode materials can provide higher energy density and power. Density, has been widely used in new energy vehicle power batteries. Recently, new progress has been made in the engineering research of single crystal high-nickel ternary materials. Source of this article: WeChat public account Shanghai Jiao Tong University Chemistry and Chemical Engineering
Lithium nickel cobalt manganate (NMC) and lithium nickel cobalt aluminate (NCA) ternary cathode materials can provide higher energy density and power density and have been widely used in new energy vehicle power lithium batteries. Recently, new progress has been made in the engineering research of single crystal high-nickel ternary materials.
Source of this article: WeChat public account Shanghai Jiao Tong University School of Chemistry and Chemical Engineering ID: i-scce
Recently, Special Researcher Li Linsen and Professor Ma Zifeng of Shanghai Jiao Tong University collaborated with Professor Tang Ming of Rice University in the United States to publish a paper titled "Energy Storage Materials", a well-known journal in the field of energy materials. The latest research results of "Single-Crystal Nickel-Rich Layered-Oxide Battery Cathode Materials: Synthesis, Electrochemistry, and Intra-Granular Fracture". The first author of the paper is Qian Guannan, a doctoral candidate at the School of Chemistry and Chemical Engineering of Shanghai Jiao Tong University. Li Linsen, Tang Ming and Ma Zifeng are the co-corresponding authors of the paper.
Lithium nickel cobalt manganate (NMC) and lithium nickel cobalt aluminate (NCA) ternary cathode materials can provide higher energy density and power density and have been widely used in new energy vehicle power lithium batteries. At present, most commercialized ternary cathode materials are secondary spherical polycrystalline materials of about 10 microns formed by the agglomeration of nanoscale primary particles. There are a large number of grain boundaries inside polycrystalline NMC. During the battery charging and discharging process, polycrystalline NMC is prone to grain boundary cracking due to anisotropic lattice changes, causing secondary particles to break, and the specific surface area and interface side reactions to increase rapidly (Figure 1), causing the battery impedance to rise. , performance degrades rapidly.
Figure 1. Schematic representation of particle fragmentation in polycrystalline and single crystalline NMC cathode materials and its correlation with electrochemical performance.
There are no grain boundaries inside single-crystal ternary materials, which can effectively deal with the problem of grain boundary fragmentation and performance degradation caused by it. This research team developed a new single-crystal material synthesis process to prepare single-crystal NMC ternary cathode materials. In this work, in-situ XRD and ex-situ SEM were used to observe the preparation process, and reaction parameters such as calcination temperature, lithiation ratio, and water washing process were optimized to prepare type 622 and type 811 single crystal NMC with excellent performance. Compared with commercial polycrystalline ternary materials, single crystal ternary materials have better cycle stability at both normal and high temperatures. (Figure 2) The team further studied the internal crack growth and single crystal problems of single crystal NCM. Through fracture mechanics analysis, the parameter conditions for the growth of internal cracks in single crystals and the critical size value for internal cracking of single crystals were estimated; through electrochemical experiments and ion beam cutting, the battery charging voltage, electrochemical phase change, and material delithiation amount were elucidated. The relationship with the internal cracks of single crystal and the problem of crack growth orientation. Research shows that within the normal charge and discharge voltage range (2.8-4.3 V vs Li+/Li), after 1000 charge and discharge cycles, single crystal ternary material particles will not break; however, under overcharge conditions (for example, Charged to 4.7 V, each structural unit takes out >0.84 Li+), single crystal NMC particles will also undergo intra-particle fragmentation. This work provides theoretical basis and model materials for the further development of single-crystal high-nickel ternary materials.
Popular recommendation
AG13 battery!Siemens sets up energy storage battery research center to cooperate with Tianmu Lake Re
2023-10-08CR2032 button cell.Hydrogen fuel cells may become an important technical route for new energy vehicl
2023-10-08CR2450 battery.Commonly used filament preheating circuits for fluorescent lamps
2023-10-08NiMH battery pack.Nickel metal hydride battery technology training: nickel metal hydride battery pri
2023-10-09CR1130 battery.Institute of Advanced Technology makes progress in research and development of flexib
2023-10-08no 5 alkaline battery.Latest research progress on rational design of high-performance alkaline secon
2023-10-09lithium battery for solar energy storage system.The latest research progress in polymer solar cell p
2023-10-08AG12 battery!Power battery technology is becoming increasingly diversified, and ternary lithium batt
2023-10-08polymer lithium battery.The latest research progress on nickel-cobalt-manganese ternary materials fo
2023-10-09Where does the battery come from the electrical
2022-06-1818650 battery 3.7v 3500mah.UPS battery pack isolation discharge test, UPS battery battery discharge
2023-10-08AG2 battery.What is the process of making 18650 lithium-ion battery pack?
2023-10-09